

IWEPS Conférence méthodologique

7 décembre 2011

Internalisation of Freight Transport External Costs in the Paris-Amsterdam Corridor

Hugues Duchâteau (Stratec)

Content

- 1. Context and overview of the study
- 2. Baseline scenario and internalisation scenarios
- 3. Model
- 4. Simulation results:
 - 4.1 Marginal Social Cost
 - 4.2 Impacts of the scenarios on:
 - Transport demand and modal split
 - CO2 and other environmental external costs
 - Congestion (time losses)
 - Revenues from taxes and charges
- 6. Conclusions

1. Context and overview of the study

Context

- New Eurovignette Directive:
 - Allows the Member States to include external costs in the charge levels (on top of infrastructure costs)
 - and to differentiate the charge levels according to the congestion level
- TEN-T Seine-Scheldt project (project nr 30),

Furthermore:

- High priority for decarbonising transport
- Objectives for reducing air pollution, noise and accidents
- Objectives for modal shift from road to IWW and rail

Study overview: aim and scope

• Aim:

- Assess the impacts of transport pricing schemes based on social costs
- Strategic EU freight corridor: Paris Amsterdam (and related regions)
- Scope:
 - Road, rail and inland waterway transport
 - Interurban HLV traffic
 - France, Belgium and the Netherlands

The Paris-Amsterdam corridor – 2020 road, rail and IWW networks

PARIS-AMSTERDAM CORRIDOR 2020 road, rail and inland waterways networks

The Seine-Scheldt project (TEN-T project 30)

Source: www.seine-scheldt.org

Study overview: funders, partners, timing

- Study co-funded by:
 - the European Commission (DG MOVE)
 - Voies Navigables de France, Réseau Ferré de France (France)
 - Service Public de Wallonie, Waterwegen en Zeekanaal (Belgium)
 - Ministry of Transport of The Netherlands
- Partners involved: two consortia of consultancies:
 - Environmental external costs :CE Delft, Alenium, Infras and Max Herry
 - Modelling: Stratec and Setec
 - plus a Scientific Committee
- Timing: September 2009 December 2010

Study overview: overall approach

- Overall approach:
 - Overview of environmental and infrastructure costs
 - Environmental costs considered are: climate, air pollution, noise, accidents, congestion and 'upstream'
 - Overview of existing taxes, charges and subsidies (→ BAU scenario)
 - Development of a freight transport model, which includes:
 - a mode choice model
 - an assignment model able to calculate multimode User Equilibrium as wel as System Optimal Equilibrium
 - Definition of pricing scenarios
 - Scenario simulations and impact analysis

 A set of 5 scenarios, including an optimal scenario, two realistic scenarios and an accentuated targetoriented scenario

Scenario overview

Note: only the HGV's are charged, not the light vehicles (private cars and light freight)

Scenario overview: BAU and MSCP

• BAU- Reference scenario (2020 and 2050):

- Current taxes and charges
- Needed to see the impacts of internalisation policies

• Scenario 1 – MSCP (Marginal Social Cost Pricing):

- Marginal Social Cost for all modes
- Congestion charges based on model calculations: System Optimum Equilibrium
- Optimal pricing according to the economic theory (Pigou, Hotelling, ..)

Scenario overview (cont.): Eurovignette

• Scenario 2 – Eurovignette proposal:

- Based on 2008 Commission proposal (at the time of the study) and in line with the Eurovignette Directive adopted in June-July 2011 (Parliament/Council)
- Focus on road: charging for total infrastructure cost plus air pollution and noise
- Congestion charges based on IMPACT values
- No charges for IWT and rail (BAU situation)
- Realistic proposal for short term
- Scenario 3 Eurovignette proposal extended:
- Same as scenario 2 with additional carbon tax on fuel for all modes
- Congestion charges based on model calculations (averages)
- Marginal infrastructure cost + air pollution and noise charges for rail and IWT (like for road – noise only for rail)
- More collaborative and realistic for medium term

Scenario overview (cont.): Target oriented

Scenario 4 - Target oriented

- ▶ Carbon tax of €40 (2020) and €85 (2050) per t CO₂; doubled for road
- Km-charges for road: twice all infrastructure and external costs: air pollution, noise and accidents
- Congestion charges for road based on congestion model output
- Marginal infrastructure and external costs for IWT and rail
- To test the impact on modal shift of a maximum pricing of road according to the future IWW capacity

Scenario 5 – Eurovignette proposal – Boiteux values

 Same as scenario 3, but with French default external cost values from Boiteux (while in scenario 3: external cost values from the IMPACT Handbook)

Methodology for the external costs

• External costs (CE Delft):

- Climate, air pollution, noise, accidents, congestion and 'upstream'
- Unit cost values: corridor values in line with IMPACT handbook (2008)
- Data on fuel consumption, emissions and load factors made consistent with the traffic model (improvements in 2020 and 2050)

3. The model

- A comprehensive model
- Able to calculate the optimal pricing scenario (Pigovian) against which other scenarios could be assessed

Model overview

- Mode choice model: multinomial logit model (road/rail/IWW) (shippers behaviour) - shipper utilities as a function of cost and time - estimated on SP and RP data

- Network models: NODUS (rail and IWW) and SATURN (road) softwares path choice (transport operators behaviour) – transport cost functions depending on transport time and distance
- Demand segmentation in 14 good categories
- Congestion modelling in the Saturn traffic model

Model overview

Saturn road traffic model

- Saturn assignment: equilibrium approach
- Two types of assignment:
 - User Optimal Equilibrium: reflects the actual behaviour of the user (each user tends to minimise his generalised transport cost)
 - System Optimal Equilibrium: reflects how it would be if each user is charged with his Marginal Social Cost, i.e. the value of the time losses that he causes to all other road users + other external costs

Mode choice and road congestion models

Mode choice and road congestion models

Simulation procedure including the **System Optimal** assignment and the calculation of the

4.1 Simulation results: congestion cost

Summary

- The marginal congestion costs (MCC) are highly differentiated both spatially and temporally
- The MCC averaged on the whole network and the whole year (peak hours and off-peak hours) leads to a rather low value (~ 3 Eurocents/HGV-km)
- But in congested areas, the MCC is the highest component of the external costs (MCC ≈ 65 Eurocents/HGV-km in the Brussels area)

4.1 Simulation results: MSCP scenario

MCC by road section in France - 2020 Motorways – peak hour

MCC by road section in Belgium - 2020 Motorways – peak hour

	0	to	0.01
	0.01	to	0.5
	0.5	to	1
	1	to	5
-	5	to	50
_	50	to	100
	100	to	200
	200	to	500
More than 500			

MCC by road section in The Netherlands - 2020 Motorways – peak hour

Congestion cost versus the other road external costs

 Marginal external cost in 2020 for bulk (source: CE Delft + Stratec for the congestion cost)

 \rightarrow Conclusion : in (highly) congested areas, the congestion cost is by far the largest component of the road external cost

4.2 Simulation results: scenario impacts

Summary

- Significant modal shift:
 - about 15 % increase in IWW and rail volumes (tons) in the Eurovignette scenario
 - up to +30% tons by IWW and 25% by rail in the target-oriented scenario
- Significant reduction in CO₂ emission:
 - about 20% in the Eurovignette scenarios
- Significant reduction of external costs:
 - up to 14% in the Eurovignette scenarios
- Higher revenues
 - twice BAU revenues in Eurovignette scenarios

Impacts on the modal repartition (tons) in the corridor in 2020

Impacts on traffic volumes (vehicle-km) by mode in the corridor in 2020

Impacts on CO₂ emissions in 2020

Reduction in CO2 emission (well-to-wheel) : -17% and -21 % in the Eurovignette scenarios, -39 % in the target-oriented scenario

Source : CE DElft

Impacts on external costs in 2020

Source : CE DElft

Conclusions

About methods:

Availability of tools to simulate optimal pricing scenarios and then compare politically/technically feasible scenarios to the optimum

About policies:

 Pricing policy fits well in long term strategy for reducing environmental damages due to transport (among others, for decarbonizing transport) and other external costs

